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Abstract
We study the 3D integer transport coefficients of the electron gas in a tilted
magnetic field with the model of Bloch electrons. Calculations without any
approximation of the relevant basis functions and matrix elements yield the
topologically invariant conductances and their Diophantine equation.

Introduction

Equations for integers, named Diophantine after Diophantus of Alexandria (about AD 250),
are an important topic in the theory of numbers (Fermat, Euler etc) [1]. In the theoretical
physics of condensed matter, they appear as a result of magnetic translational symmetry in
studies of Bloch electrons in a magnetic field exhibiting a quantum Hall effect in two and three
dimensions. For reviews and books see for instance Thouless [2], Sokoloff [3], Prange and
Girvin [4], MacDonald [5], Das Sarma and Pinczuk [6], Thouless [7], Girvin [8].

For two dimensions, such an equation was written for the first time by Wannier [9] in a
study of the location of energy gaps upon splitting of a Bloch band into subbands, then it was
used by Streda [10] in the discussion of the quantum Hall effect in the ‘tight binding’ limit.

Hall conductance calculations in the seminal paper by Thouless et al (TKNN) [11] on
Bloch electrons in a uniform perpendicular magnetic field were based on the Kubo formula,
they also yield such an equation connecting the ‘quantum numbers’ which appear.

More generally, similar equations were shown to yield a labelling of gaps in the energy
spectra of a Schrödinger equation with an (almost) periodic potential. (See, for instance, [12]
and [13].)

Dana, Avron and Zak [14] were the first to show them to be a consequence of magnetic
translational invariance: when the number of flux quanta per unit cell is ϕ = p/q with p and
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q relatively prime, an isolated magnetic subband carries an integer Hall conductance σH and
an integer adiabatic transport coefficient σV such that

pσH + qσV = 1

with σH and σV Chern numbers.
Kunz [15] was the first to give the physical significance of the ‘second’ topological invariant

σV: it measures, in convenient units, charge transport when the (lattice) periodic potential is
adiabatically displaced.

In previous work [16] (in the following TAH), following Zak [17, 18] and Kunz [15], the
basis functions, matrix element, Hall conductance and adiabatic charge transport coefficient
for the 2D problem and the relevant Diophantine equations were explicitly calculated by one
of us.

A wealth of new phenomena have been observed in experimental studies of 2D Bloch
electrons where the magnetic field is no longer perpendicular to the plane where the electron
motion is confined,originating in an important literature [19–25]. Among the most noteworthy:

• the collapse of the even-denominator fractional quantum Hall effect upon tilting the
magnetic field;

• the appearance of states of the 2DEG in high Landau levels (N > 2) showing a high
anisotropy that is also sensitive to the magnetic field direction.

All of them evidence the importance of the 3D character in the electron gas behaviour and
have prompted a variety of theoretical studies.

Halperin [26] has first derived, as a generalization of the arguments of Thouless et al, an
abstract formula for the 3D quantized Hall conductivity, using the Kubo–Greenwood formula,
in terms of the eigenfunctions of the Hamiltonian of 3D non-interacting Bloch electrons in a
magnetic field.

Montambaux and Kohmoto [27] started from a 3D tight binding Hamiltonian in a specific
geometry where the magnetic field is perpendicular to the Bravais lattice a–b plane and the
vector c tilted at an angle θ with respect to the field. They derived the Hall conductance in 3D
as ‘a set of three integers’ found as solutions to a Diophantine equation.

Kohmoto et al [28] then expressed the Hall conductance of 3D electrons in a periodic
potential in a topologically invariant form with a set of three integers in a more general case.

None of these authors discuss the possible physical significance of these invariants.
We work with the model of independent Bloch electrons in a magnetic field tilted at an

angle θ with respect to the z axis perpendicular to the motion. Our calculations are performed
without any approximation.

Part 1 deals with the framework: the concepts and the methods involved in the ‘pure’
2D case are first briefly summarized for the benefit of non-specialist readers; then the 3D
Hamiltonian, the construction of new magnetic translation operators adapted to the problem
using Schellnhuber’s [29] method, the new basis functions and eigenvalue equations are
presented. In part 2 and appendix A, the 3D Hamiltonian matrix elements are calculated
analytically. In part 3, after, again, a 2D ‘reminder’, the relevant conductances and the
Diophantine equations are derived and interpreted in terms of transport in the electron gas.

1. The framework

1.1. A short trip back to the ‘pure’ 2D case

Bloch electrons in a magnetic field are two-dimensional independent electrons in a periodic
potential and a uniform magnetic field B perpendicular to their xOy plane, to which, in the
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following, we assume them to be confined by some confining potential. For more details, the
reader is referred to [2–13]. Details on the possible form and the effects of such a confining
potential will be presented subsequently.

The Landau Hamiltonian is

H0 = p2
x + (py + eBx)2

2m
(1)

with the vector potential in the Landau gauge

�A = (0, Bx) (2)

with energy levels E = (n + 1
2 )h̄ωc, where ωc = eB

m . The orbit centre operators

X = − py

eB
and Y = px

eB
+ y (3)

commute with H0, but not with each other; they are conjugate variables: [X, Y ] = i�2 with
�2 = h̄

eB the square magnetic length. The Landau eigenfunctions of H0 are

�qy ,n(x, y) = eiyqy fn

(
x + qy�

2

�

)
(4)

with fn the oscillator eigenfunction for the nth Landau level and qy the quasi-impulsion along
y.

The periodic potential can be considered either as the mean field of two- and four-body
interactions between electrons [16] or as an external potential, often a crystal potential or, for
example, due to density modulations:

V (x, y) = Vx cos

(
2π

a
x

)
+ Vy cos

(
2π

b
y

)
. (5)

Although the system as described is translation invariant,

H = H0 + V (x, y) (6)

no longer commutes with the usual translation operators

Ta = ei apx
h̄ Tb = ei

bpy
h̄ . (7)

This is due to the potential vector term, linear in x , and is a purely quantum effect. Other
translation operators must then be defined that can describe translational invariance in the
presence of a magnetic field. The first to understand the form to be given to those operators
was Joshua Zak [17].

The operators

Sa = ei a(px +eBy)

h̄ and Sb = ei
b py

h̄ (8)

commute with H0 and H . We can also write

Sa = ei a�Cx
h̄ Sb = ei

b�Cy
h̄ (9)

where

�Cx = px + eBx �Cy = py. (10)

The action of these operators on the wavefunctions is no more only just to effect a translation,
but also now to multiply them by a position dependent phase factor. Furthermore, they do not
commute with each other:

Sa Sb = Sb Sae−i abeB
h̄ (11)
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where
abeB

h̄
= 2π

abB

h/e
= 2π

φ

φ0
= 2πϕ. (12)

This phase is the number of magnetic flux quanta through a unit cell, multiplied by 2π . One
can write

Sa Sb S−1
a S−1

b = e−i2πφ/φ0 (13)

which expresses the following property: a translation of the wavefunction around a rectangle
of sides a and b results in the multiplication of this wavefunction by a phase factor with phase
equal to, in convenient units, the number of flux quanta through the rectangle area. This is the
Aharonov–Bohm effect [30].

If we want to define a complete set of commuting observables (CSCO) so as to be able to
write down a complete orthonormal basis of eigenfunctions adapted to the problem symmetries,
we need translation operators which commute with each other. To this end [17], we impose
the following condition: abeB

h̄ = 2π
p
q or abB

h/e = p
q —the number of flux quanta per unit cell is

a rational number.
When this condition is fulfilled, operators Sa and Sqb commute with each other. They are

defined on a cell which is q times the unit cell and therefore contains p flux quanta. Such a
condition is not very restrictive, since the group of rationals is dense in the group of reals.

Now the Landau Hamiltonian H0 and the two magnetic translation operators Sa and Sqb can
define a CSCO. It is therefore possible to define a basis of complete orthonormal eigenfunctions
for these operators, which will enable us to diagonalize our problem.

The magnetic translation operators are unitary; they obey

S−1
a(qb) = S+

a(qb). (14)

Their eigenvalue equation is

Saφ
�q
n j(x, y) = eiaqx φ

�q
n j(x, y)

Sqbφ
�q
n j (x, y) = eiqbqy φ

�q
n j(x, y)

(15)

where �q = (qx, qy) characterizes the eigenvalue and the associated eigenvector. This quantity
plays the same role as the wavevector of the usual Bloch electron problem; it is called the ‘quasi-
impulsion’ of the eigenstate φ. It is defined, by analogy with the case without a magnetic field,
in the following Brillouin zone:

− π

a
� qx <

π

a
and − π

qb
� qy <

π

qb
. (16)

By construction of magnetic translation operators, the quasi-impulsion is connected to the
position of the cyclotron orbit centre.

It can then be shown, using Zak’s k–q representation theory [31], that the eigenfunctions
for the operators which enclose one single flux quantum

Sa/p = ei a P
ph̄ and Sqb = ei qbX

�2 = e−ip 2π X
a (17)

can be written as a function of one of the orbit centre operators, X , alone (‘X representation’):

gq ′
x qy (X) =

√
2π

a
p

∑
µ

eiµq ′
x a/pδ

(
X − qy�

2 − µ
a

p

)
with µ ∈ Z (18)

and, as such, they form a complete orthonormal basis [31].
The gq ′

x qy (X) period as a function of q ′
x is 2πp/a while, the potential period in x being

a, its Fourier components are a function of 2π/a. This means that the periodic potential will
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mix the q ′
x components of gq ′

x qy (X) which differ by 2π/a, and the matrix element calculated
using these functions will not be diagonal in q ′

x : this is a direct consequence of the property
[V (x, y), Sa/p] �= 0. To resolve this difficulty [18], we define qx such that q ′

x = qx + 2π
j
a

with j = 1, . . . , p where the eigenvalue qx of Sa varies in the Brillouin zone defined in the
previous section. Now the periodic potential will mix the js but not the qxs; therefore the
matrix element will be diagonal in qx and qy:

gqx qy j (X) =
√

2π

a
p

∑
µ

ei(qx + 2π
a j) a

p µ
δ

(
X − qy�

2 − µ
a

p

)
(19)

with µ ∈ Z , �q = (qx, qy). For more detailed properties of the g functions, and more details
in general, the interested reader is referred to [14, 16–18].

To build a basis of eigenfunctions depending on x and y, complete and orthonormal, which
be eigenfunctions of the Landau Hamiltonian H0 as well, we have to sum the product of the
gqx qy j (X) with ��q,n(x, y) over all the possible orbit centres, with X varying between −∞ and
+∞, and the final form is

φ
�q
n j (x, y) =

√
2π

a
p

∑
µ

∫
dX e−iy X

�2 fn

(
x − X

�2

)
e−i µa

p (qx + 2π
a j)

δ

(
X − qy�

2 − µa

p

)

=
√

2π

a
p

∑
µ

e−i µa
p (qx + 2π

a j)e−iy(qy+ 2π
qb µ) fn

(
x − (

qy + 2π
qb µ

)
�2

�2

)
. (20)

In order to give a slightly more concrete view of its behaviour, in (21) we give a few examples
of the translation (periodicity) properties of this basis in direct and reciprocal space:

φ
�q
n j (x + a, y) = eiaqx e−iy aeB

h̄ φ
�q
n j (x, y)

φ
�q
n j

(
x +

a

p
, y

)
= ei a

p (qx + 2π
a j)e−iy aeB

ph̄ φ
�q
n j (x, y)

φ
�q
n j (x, y + qb) = eiqbqy φ

�q
n j(x, y)

φ
qx + 2π

a ,qy

n j (x, y) = φ
�q
n j+1(x, y)

φ
qx + 2π

a p,qy

n j (x, y) = φ
�q
n j(x, y)

φ
qx ,qy + 2π

qb

n j (x, y) = ei a
p (qx + 2π

a j)
φ

�q
n j(x, y)

φ
qx ,qy + 2π

qb p

n j (x, y) = eiaqx φ
�q
n j(x, y).

(21)

The matrix element h �q �q ′
nn′ j j ′ for the operator H can now be calculated:

h �q �q ′

nn′
j j ′

=
∫

dx dy φ
∗�q ′
n′ j ′(x, y)Hφ

�q ′
n j(x, y) (22)

with n and n′ relative integers varying from −∞ to +∞, j and j ′ integers from 1 to p, and the
wavevector �q in the Brillouin zone as previously defined:

− π

a
� qx, q ′

x <
π

a
− π

qb
� qy, q ′

y <
π

qb
. (23)

When the field B is no longer perpendicular to the xOy plane, it may, without loss of
generality, be chosen to be in the xOz plane (see the figure below). The scheme outlined above
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is now adapted to this new configuration.

B

z

y

x

θ

1.2. The Hamiltonian in 3D

In the Landau gauge, the vector potential now reads

�A = (0, Bx cos θ − Bz sin θ, 0). (24)

The Hamiltonian then reads

H = p2
x + (p2

y + eBx cos θ − eBz sin θ)2 + p2
z

2m
+ V (x, y, z) = H0 + V (x, y, z) (25)

with

V (x, y, z) = Vx cos

(
2π

a
x

)
+ Vy cos

(
2π

b
y

)
+ Vz cos

(
2π

c
z

)
. (26)

1.3. Calculation of the magnetic translation operators

The quantities

�Cx = px + eBy cos θ �Cy = py �Cz = pz − eBy sin θ (27)

are the conserved quantities of the problem in the absence of a periodic potential [32], the
operators which are their quantum equivalent commute with the Hamiltonian H0 and allow us
to define new magnetic translation operators:

Sθ
a = ei a(px +eBy cos θ)

h̄ Sθ
b = ei

bpy
h̄ Sθ

c = ei c(pz−eBy sin θ)

h̄ (28)

with

Sθ
a Sθ

b = ei2πϕc Sθ
b Sθ

a Sθ
b Sθ

c = ei2πϕa Sθ
c Sθ

b Sθ
a Sθ

c = Sθ
c Sθ

a (29)

where now

ϕa = bcB sin θ

h/e
= bc sin θ

2π�2
ϕc = abB cos θ

h/e
= ab cos θ

2π�2
. (30)

If, by analogy with the 2D case, one sets

ϕa = bc sin θ

2π�2
= r

s
ϕc = ab cos θ

2π�2
= p

q
(31)

where r and s, on the one hand, and p and q , on the other, are relatively prime, one gets the
compatibility condition

c sin θ

a cos θ
= rq

sp
(32)
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which is in some sense the transposition to the tilted field case of what is usually called the
‘rationality condition for the magnetic field’ [9]. This implies

�B = (B sin θ)x̂ + (B cos θ)ẑ

�B =
(

h

ebc

r

s

)
x̂ +

(
h

eba

p

q

)
ẑ

=
(

h

eabc

r

s

)
�a +

(
h

ecba

p

q

)
�c

=
(

h

eabc

) [
r

s
�a +

p

q
�c
]

�B = φ0

v0

[
r

s
�a +

p

q
�c
]

(33)

where v0 = abc is the volume of the unit cell of the Bravais lattice and φ0 the magnetic flux
quantum.

We now try to choose for operators of our CSCO Sθ
a , Sθ

qsb and Sθ
c and build their

eigenfunctions. But this is hampered by the following facts. When θ is zero, among the
three operators in 3D, two do not commute with each other; Sc does commute with Sa and
Sb. From these new operators, we can build our basis functions. Now for non-zero θ , Sθ

c no
longer commutes with Sθ

a . This prevents us from building the basis of functions using the k–q
method [31] as had been done in the 2D case.

To solve this difficulty, we use a variant of Schellnhuber’s method [29], which consists in
using translation operators which are built not on the lattice defined by �a, �b and �c, but on one
defined by other vectors �a1, �a2 and �a3, which result in a Bravais lattice equivalent to the previous
one, but on which the new translation operators S1, S2 and S3 that we get have the following
adequate commutation relations, identical to those of the former translation operators when
the angle θ is zero:

[S1, S2] �= 0 [S1, S3] = 0 [S2, S3] = 0. (34)

1.4. Schellnhuber’s framework for the problem and a new Brillouin zone

The criteria for defining the new Bravais lattice are twofold:

(a) In order for the magnetic translation operator to commute with the two others, it must
‘translate’ along the direction of the magnetic field �B:

�B =
(

h

eabc

) [
r

s
�a +

p

q
�c
]

. (35a)

(b) The number of states in the associated Brillouin zone must be unchanged.

Let t be the smallest common multiple of s and q , and L the largest common factor of r
and p, we may rewrite �B in the following way:

�B =
(

h

eabc

)
L

t

[
n1�a + n2�c

]
(35b)

where n1 and n2 are relatively prime integers and so are L and t . Then,

Ln1

t
= r

s
and

Ln2

t
= p

q
(36a)
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and
c sin θ

a cos θ
= n1

n2
(36b)

which yields

n2c sin θ − n1a cos θ = 0. (36c)

Let us take for the first vector �a3 of the new Bravais lattice

�a3 = n1�a + n2�c (37a)

which will be used to build the first new magnetic translation operator and keep

�a2 = �b (37b)

since in the y direction nothing is changed, and define

�a1 = ñ1�a + ñ2�c (37c)

where ñ1 and ñ2 are integers to be determined so as to fulfil the second condition—that is, that
the unit cell volume of the new lattice be identical to the previous one (V0 = abc), so as to
ensure the conservation of the number of states:

�a1 · (�a2 × �a3) = �a1 · [bŷ × (n1ax̂ + n2cẑ)]

= �a1 · [−n1abẑ + n2bcx̂]

= (ñ1ax̂ + ñ2cẑ) · [−n1abẑ + n2bcx̂]

= abc(ñ1n2 − ñ2n1). (38)

This leads to the condition

(ñ1n2 − ñ2n1) = 1 (39)

which allows the determination of ñ1 and ñ2 by

ñ1a cos θ − ñ2c sin θ = a cos θ

n2
. (40)

When θ is zero,

n1 = 0 n2 = 1 L = p t = q ñ1 = 1 ñ2 = 0.

On the new Bravais lattice a new Brillouin zone is defined as usual:

�Gi = εi jk2π
�a j × �ak

v0

�G1 = 2π

a
n2 x̂ − 2π

c
n1 ẑ

�G2 = 2π

b
ŷ

�G3 = −2π

a
ñ2 x̂ +

2π

c
ñ1 ẑ.

(41)

If we denote by

�g1 = 2π

a
x̂ �g2 = 2π

b
ŷ �g3 = 2π

c
ẑ (42)

the vectors of the former Brillouin zone, then the new Brillouin zone has

�G1 = n2 �g1 − n1 �g3 �G2 = �g2 �G3 = −ñ2 �g1 + ñ1 �g3 (43)
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and the angle α appears in the figure below. The volume and hence the number of states are
the same.

B,a3

a1 a2

z Z

y

Y

X

x

α

α

θ

θ

Then the translation operators read

S1 = ei ��c ·�a1/h̄ S2 = ei ��c ·�a2/h̄ S3 = ei ��c ·�a3/h̄ (44)

where

��C · �a1 = (px + eBy cos θ)ñ1a + (pz − eBy sin θ)ñ2c

= ñ1apx + ñ2cpz + eBy(ñ1a cos θ − ñ2c sin θ)

��C · �a1 = ñ1apx + ñ2cpz + eBy
a cos θ

n2
(45a)

��C · �a2 = bpy (45b)

��C · �a3 = (px + eBy cos θ)n1a + (pz − eBy sin θ)n2c

= n1apx + n2cpz + eBy(n1a cos θ − n2c sin θ)

��C · �a3 = n1apx + n2cpz. (45c)

Then,

S1 S2 = ei2πϕ3d S2 S1

[S2, S3] = 0 [S1, S3] = 0
(46)

with

ϕ3d = ab cos θ

2π�2n2
= L

t
(47)

S1 S2 = ei2πϕ3d S2 S1 ⇒ S1 S2 S−1
1 S−1

2 = ei2πϕ3d .

This equation means that when we translate the wavefunction around a surface defined by
�a1 and �a2, it is multiplied by a phase factor ei2πϕ3d , which is again nothing but the Aharonov–
Bohm effect [30]. This phase must therefore be equal to the number of flux quanta ϕ through
this surface multiplied by 2π :

2πϕ = �B · (�a1 × �a2)

h/e
= 2π

h/e

v0

L

t

�a3 · (�a1 × �a2)

h/e
= 2π

L

t
(48)

and ϕ3d is indeed the number of flux quanta through the unit cell defined by �a1 and �a2.
The quantity ϕ3d then plays the same role in the theory as ϕ = p/q in 2D; similarly L

plays the same role as p, t the same as q .
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1.5. New basis functions

To build the complete orthonormal basis of functions from these operators, we choose, by
analogy with what is currently being done in 2D, S1, (S2)

t and S3, which are defined on the
cell enclosing L flux quanta.

S3 commutes with S1, (S2)
t . We begin by constructing a basis on a cell enclosing one flux

quantum using S1/L
1 and St

2 using the k–q representation. The conjugate operators are now

X̃ = − py

eB
and P̃ = n2

ñ1apx + ñ2cpz

a cos θ
+ eBy (49)

and from these we obtain the translation operators

S1/L
1 = ei a cos θ

n2 Lh̄ P̃ St
2 = e−i 2π Ln2

a cos θ
X̃ . (50)

Their eigenfunctions are [31]

gqX qY (X) =
√

2π Ln2

a cos θ

∑
µ

eiµ a cos θ
Ln2

qX δ

(
X − qY �2 − a cos θ

Ln2
µ

)
. (51)

The question of other possible choices (e.g. Wannier functions, [33]) will not be discussed
here. As before, to get eigenfunctions of S1 and St

2, we define the index j as varying between
1 and L:

gqX qY j(X) =
√

2π Ln2

a cos θ

∑
µ

e
iµ a cos θ

Ln2

(
qX + 2πn2

a cos θ
j
)
δ

(
X − qY �2 − a cos θ

Ln2
µ

)
(52a)

with

− πn2

a cos θ
� qX <

πn2

a cos θ
and − π

tb
� qY <

π

tb
. (52b)

What will the eigenfunction for S3 be? It is a ‘usual’ translation operator in the direction
of the magnetic field:

S3 = exp

(
i
n1apx + n2cpz

h̄

)
= exp

(
i

(
n2c

cos θ

))
sin θpx + cos θpz

h̄
. (53)

S2 is also a translation operator in real space, with a multiplication by a y-dependent phase
factor:

S2 = exp

(
i
ñ1apx + ñ2cpz + eBy a cos θ

n2

h̄

)

= exp

(
i

(
ñ1a

cos α

)
cos αpx + sin αpz

h̄

)
exp

(
ieBy

a cos θ

h̄n2

)
(54)

where α is the angle between �a1 and the x axis (see figure above):

ñ2c

ñ1a
= sin α

cos α
.

We are therefore looking for an eigenfunction of S3 on which S2 does not act; we may
choose

1√
2π

eiqZ (−x sin α+z cos α).

The effect of S2 on this function is a translation in x and a translation in z:

− ñ1a sin α + ñ2c cos α = 0 (55)
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where we used the relationship between ñ1 and ñ2 and the angle α. (Note that α = 0 when
θ = 0.) Therefore S2 has no effect on this function. S3 induces a translation in x and a
translation in z, so

− n1a sin α + n2c cos α = −n1ñ2ac + n2ñ1ca

a1
= ca

a1
(56)

and we get

S3

{
1√
2π

eiqZ (−x sin α+z cos α)

}
= eiqZ

ac
a1

{
1√
2π

eiqZ (−x sin α+z cos α)

}
. (57)

In view of the presence of the periodic potential, we rewrite the function as
1√
2π

exp(i(qZ + kG3)(−x sin α + z cos α))

where k is an integer and G3 is the norm of the third vector of the Brillouin zone:

G3 = 2π
a1

ac
.

We are now able to build out of these elements an eigenfunction basis, in a way very much
analogous to the ‘pure’ 2D case when the field is perpendicular [31], using the eigenfunctions
of the Landau Hamiltonian, which will make the calculation of the matrix element simpler.
Now that the field is tilted, they are of the form

�qy ,n(x, y) = eiyqY fn

(
x cos θ − z sin θ + qY �2

�

)
(58)

with fn the eigenfunction of the 1D harmonic oscillator. A standard calculation then yields

�
qX qY qZ
n jk (x, y, z) =

√
Ln2

(2π)2a cos θ
exp(i(qZ + kG3)(−x sin α + z cos α))

×
∑

µ

exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× exp

(
iy

(
qY +

2π

tb
µ

))
fn

(
x cos θ − z sin θ +

(
qY + 2π

tb µ
)
�2

�

)
(59a)

with

− πn2

a cos θ
� qX <

πn2

a cos θ
− π

tb
� qY <

π

tb
− πa1

ac
� qZ <

πa1

ac
. (59b)

1.6. The eigenvalue equation

We study the action of S1, S2 and S3, then of Sθ
a , Sθ

tb and Sθ
c , then write the transform which

connects the two sets of operators and (qX , qY , qZ ) to (qx, qy, qz). The eigenvalues can be
shown to be

for S1: exp

(
i
La cos θ

n2 L

(
qX +

2πn2

a cos θ
j

))
= exp

(
i
a cos θ

n2
qX

)
(60a)

for S2: eitbqY (60b)

and for S3: eiqZ
ac
a1 = eiqZ

2π
G3 . (60c)

Therefore

S1�
qX qY qZ
n jk = ei a cos θ

n2
qX �

qX qY qZ
n jk

S2�
qX qY qZ
n jk = eitbqY �

qX qY qZ
n jk

S3�
qX qY qZ
n jk = ei 2π

G3
qZ �

qX qY qZ
n jk .

(61)
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Similarly, one gets, for Sθ
a , Sθ

b and Sθ
c ,

Sθ
a �

qX qY qZ
n jk = eia(qX cos θ−qZ sin α)�

qX qY qZ
n jk

Sθ
tb�

qX qY qZ
n jk = eitbqY �

qX qY qZ
n jk

Sθ
c �

qX qY qZ
n jk = eic(−qX sin θ+qZ cos α)�

qX qY qZ
n jk .

(62)

And we can write

qx = qX cos θ − qZ sin α

qy = qY

qz = −qX sin θ + qZ cos α

(63)

together with the inverse

qX = 1

cos(θ + α)
{qx cos α + qz sin α}

qY = qy

qZ = 1

cos(θ + α)
{qx sin θ + qz cos θ}.

(64)

The completeness and orthogonality relationships read∫
BZ

dqx dqy dqz �∗�q
n jk(�r ′)��q

n jk(�r) = δ(�r ′ − �r)

and ∫
dx dy dz �∗�q′

n′ j ′k′ (�r)�
�q
n jk(�r) = δ(�q ′ − �q)δn′nδk′kδ j ′ j .

2. The matrix element of the 3D Hamiltonian

The calculation of the matrix element of the Hamiltonian

H = p2
x + (p2

y + eBx cos θ − eBz sin θ)2 + p2
z

2m
+ V (x, y, z) = H0 + V (x, y, z) (65)

with

V (x, y, z) = Vx cos

(
2π

a
x

)
+ Vy cos

(
2π

b
y

)
+ Vz cos

(
2π

c
z

)
(66)

on the complete orthonormal basis defined above is described in appendix A. For the sake of
simplicity, let M01 and M02 be the two terms of the matrix element of H0, M1 and M2, M3

and M4, M5 and M6 the matrix elements of, respectively, the x, y and z terms of the periodic
potential. One has

M01 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δk′kδn′nδ j ′ j

×
[(

n +
1

2

)
h̄ωC +

h̄2

2m

(
qx cos α + qz sin α

cos(θ + α)
+ kG3

)2
]

(A.12)

M02 = −δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)

sin(θ + α)

m
h̄(qZ + kG3)δk′kδ j ′ j

×
∫

d X̃ fn′

(
X̃

�

)
PX fn

(
X̃

�

)
(A.13)
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which is obtained using the known formula∫
d X̃ fn′

(
X̃

�

)
PX fn

(
X̃

�

)
= − ih̄

�
√

2
δn′,n−1

√
n +

ih̄

�
√

2
δn′,n+1

√
n + 1. (A.14)

The matrix element
∫

dx dy dz φ
∗�q ′
n′ j ′k′ V (x)φ

q ′
n jk of the 3D periodic potential yields for the term

in x

M1 + M2 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)

{
δ(k ′ − k + n1)δ( j ′ − j + ñ1)eiñ1

tb
L qY

×
∫

d X̃ φn′

(
X̃

�

)
e−i 2π

a
n2 ñ1
cos θ

X̃ fn

(
X̃

�

)
+ δ(k ′ − k − n1)δ( j ′ − j − ñ1)e

−iñ1
tb
L qY

×
∫

d X̃ φn′

(
X̃

�

)
ei 2π

a
n2 ñ1
cos θ

X̃ fn

(
X̃

�

)}
Vx

2
(A.9)

and for the term in y

M3 + M4 = Vy

2
δ(�q ′ − �q)δ j ′ jδk′k

{
eit a cos θ

Ln2
(

{qx cos α+qz sin α}
cos(θ+α)

+ 2πn2
a cos θ

j)
∫

d X̃ fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)

+ e−it a cos θ
Ln2

(
{qx cos α+qz sin α}

cos(θ+α)
+ 2πn2

a cos θ
j)

∫
d X̃ fn′

(
X̃ − 2π�2/b

�

)
fn

(
X̃

�

)}
(A.10)

and for the term in z

M5 + M6 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)

Vz

2

{
δ( j ′ − j − ñ2)δ(k

′ − k − n2)e
−iñ2tbqy

×
∫

d X̃ fn′

(
X̃

�

)
ei 2π

a
n2 ñ2
cos θ

X̃ fn

(
X̃

�

)
+ δ( j ′ − j + ñ2)δ(k

′ − k + n2)eiñ2tbqy

×
∫

d X̃ fn′

(
X̃

�

)
e−i 2 p

a
n2 ñ2
cos θ

X̃ fn

(
X̃

�

)}
. (A.11)

As in the 2D case [16, 18], these formulae lend themselves to simple band structure
and transport coefficient numerical calculations without approximations. The results will be
presented elsewhere.

We now compare this result with Montambaux and Kohmoto’s finding [27]. In their
article, the geometry was different (see below) and, using the tight binding approximation,
they studied the spectrum of a Harper equation in 3D.

B

b

a

c

θ
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Here, the magnetic field remains perpendicular to the xy plane determined by the vectors
�a and �b, but not aligned with the third vector �c of the Bravais lattice. In this geometry, Harper’s
equation depends on the two fluxes of the problem

ϕa = bc sin θ

2π�2
= p′

q ′ and ϕc = ab

2π�2
= p

q
. (67)

This case can also be dealt with using Schellnhuber’s method. The conclusions are close
to those reached and explained above: the spectrum is found to have qq ′ subbands if q and q ′
are mutually prime; otherwise it will have t subbands, with t the greatest common multiple of
q and q ′. For a comparison with the 2D matrix elements, see e.g. Zak [18] and TAH [16].

3. Transport coefficients and Diophantine equation

3.1. Back again to the 2D case

As was done in the first part, we return to the 2D case in order to present the main relevant
concepts and the theoretical framework.

The Hall conductance calculation is generally based on the Kubo formula [11]. In the
following, we use indifferently for the level or band indexes α or β as do as well well as for
instance m.

σH = ie2h̄

A

∑
Eα<EF

∑
Eβ>EF

v
αβ
x v

βα
y − v

αβ
y v

βα
x

(Eα − Eβ)2
(68)

with

vαβ
x = 〈�α

�q |vx |�β

�q 〉
where A is the area of the sample, a and b label two non-degenerate energy levels. It is
a velocity–velocity correlation function. It is rewritten using the 2D Hamiltonian, with the
functions uα

�q (�r) such that �α
�q (�r) = ei�q ·r uα

�q (�r) with the � eigenfunctions of the energy operator

and the uα
�q (�r) verify the translation properties

uα
�q (x + a, y) = e−iya/�2

uα
�q (x, y)

uα
�q (x, y + b) = uα

�q (x, y).
(69)

The Schrödinger equation then reads[
1

2m

(
−ih̄

∂

∂x
− h̄qx

)2

+
1

2m

(
−ih̄

∂

∂y
− h̄qy + eBx

)2

+ V (x, y)

]
uα

�q (�r) = Eα(�q)uα
�q (�r)

(70)

and the velocity operators appearing in the Kubo formula

vx = 1

h̄

∂ H (qx, qy)

∂qx
and vy = 1

h̄

∂ H (qx, qy)

∂qy

are rewritten as

h̄vαβ
x = 〈uα

�q |∂ H (qx, qy)

∂qx
|uβ

�q 〉 = ∂

∂qx
〈uα

�q |H (qx, qy)|uβ

�q 〉 −
〈
∂uα

�q
∂qx

∣∣∣∣ H (qx, qy)|uβ

�q 〉

− 〈uα
�q |H (qx, qy)

∣∣∣∣∣
∂uβ

�q
∂qx

〉
.
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Then the Hall conductance is

σH = − ie2

(2π)2h̄

∫
dqx dqy

[〈
∂uα

�q
∂qx

∣∣∣∣∣
∂uα

�q
∂qy

〉
−

〈
∂uα

�q
∂qy

∣∣∣∣∣
∂uα

�q
∂qx

〉]

σH = − ie2

(2π)h

∮
d�q ·

〈
uα

�q

∣∣∣∣∣
∂uα

�q
∂ �q

〉
(71)

where the integration path is along the edge of the Brillouin zone. This integral is precisely
the change of phase when we move the wavefunction along the contour ABCD around the
Brillouin zone as shown in the figure below.

Finally,

σH = e2

h
nH (72)

D C

where nH is the integer associated to the Hall conductance, which, in this formalism, is
calculated as the phase change of the eigenfunction of the Hamiltonian.

The Hall conductance verifies a Diophantine equation [14, 16, 18] which is easily deduced
from the magnetic translational symmetry of the system. This equation also connects the Hall
conductance to another topological invariant of the system, the adiabatic charge transport
coefficient σV. Both quantities (σH and σV) are integers that enable us to label the gap where
we compute them, in the sense that a combination of the two yields the electronic density of
this gap.

To establish the Diophantine equation, we refer to Dana and Zak [18] and consider a
filled band, placing ourselves above it in a gap. The energy is periodic in qx and qy, and this
periodicity coincides with the Brillouin zone. Let �Qn be a vector in the Brillouin zone and let
��q+ �Q and ��q have the same energies and the same eigenvalues for the magnetic translation
operators. They can be said to be the same state to within a phase, which depends of the
wavevector: ��q+ �Q = eiα(�q)��q . When the magnetic field is zero, we know [35] that it is
possible to build eigenfunctions of the Bloch Hamiltonian the phase of which is also periodic
in qx and qy; but the conditions allowing this property no longer exists in the presence of a
magnetic field, because the Hamiltonian then depends on x , and Weinreich’s reasoning is no
longer valid.

Because of the gauge choice, the Hamiltonian in y is the same as that for Bloch electrons
when B = 0, the translation operators along y are the usual translation operators and we can
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therefore build Bloch functions in qy:

�qx ,qy+ 2π
qb

= �qx ,qy (73a)

while

�qx + 2π
a ,qy

= eiζ(qx ,qy )�qx ,qy . (73b)

What form can we take for the phase? It must obey, for any Landau level or band, the
periodicity properties

�qx + 2π
a ,qy + 2π

qb
= �qx + 2π

a ,qy
= eiζ(qx ,qy )�qx ,qy (74a)

�qx + 2π
a ,qy + 2π

qb
= eiζ(qx ,qy + 2π

qb )
�qx ,qy + 2π

qb
= eiζ(qx ,qy + 2π

qb )
�qx ,qy (74b)

and therefore

ζ

(
qx, qy +

2π

qb

)
= ζ(qx , qy) + 2πσ (75)

where σ is an integer.
This allows us to choose the expression for the phase as follows [35]:

ζ(qx , qy) = σqyqb. (76a)

This expression obeys condition (75).
What is the integer σ? The Hall conductance is (phase)/i2π which appears when we

move the wavefunction around the Brillouin zone. But, from the expression for the boundary
conditions, going around the Brillouin zone corresponds to multiplying the wavefunction by
ei2πσ , so σ is indeed the Hall conductance. If we continue to make use of the magnetic

translation invariance properties of the problem, the operator Sb = ei
bpy

h̄ commutes with the
Hamiltonian; also, ��q and Sb��q have the same energies. But also

Sa Sb��q = ei 2πp
q Sb Sa��q = ei 2πp

q eiaqx Sb��q = eia(qx + 2πp
qa )Sb��q . (77)

Consequently Sb��q and �qx + 2πp
qa ,qy

are also the same state with identical energies and

wavevectors to within a phase:

Sb��q = eiη(qx ,qy)�qx + 2πp
qa ,qy

. (78)

How can we choose the phase? The condition that we gave implies

Sb�qx ,qy + 2π
qb

= eiη(qx ,qy + 2π
qb )

�qx + 2πp
qa ,qy + 2π

qb

but since

�qx ,qy+ 2π
qb

= �qx ,qy

this means that

η

(
qx, qy +

2π

qb

)
= η(qx, qy) + 2πm with m integer.

Therefore we can take [35]

η(qx , qy) = mqyqb. (76b)

We are now able to derive the Diophantine equation, since

Sqb�qx ,qy = eiqy qb(qm)�qx + 2π
a p,qy

= eiqy qb(qm+pσ )�qx ,qy = eiqy qb�qx ,qy
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must be true for any value of the wavevector; therefore,

pσ + qm = 1. (79)

We showed the equation for a given band,but it can be easily seen that,when we place ourselves
in the gap above nb bands,

pσH + qmnb = nb. (80)

The first to have understood the physical meaning of the second topological invariant mnb

is Hervé Kunz [15]. By construction, σ is the Hall conductance. What does m represent?
Kunz has shown that in a system subjected to a periodic potential

Vx cos

(
2π

a
x

)
+ Vy cos

(
2π

b
y + γ

)
. (5)

If we vary γ adiabatically up to the completion of a period, which corresponds to moving the
lattice along the y direction, a charge displacement along y can take place; we can calculate it
in the following fashion. The quantity

e(�v · d�s)ρ(t) dt

is the charge going through the surface element pointing in the y direction at a given point r
and during the time interval (t, t + dt). We are interested in spatial averages and the quantity
that we are looking for is

σV = lim
T →∞

e
∫ T

0
dt

{
M(vyρ(t)) − M(vyρ(0))

}
(81)

where M represents the spatial average of the operator in parentheses:

M(operator) = lim
V →∞

1

V

∫
V
(operator) d�r .

Kunz has shown that this expression can be rewritten as

σV = e

h̄(2π)2

∫ 2π/a

0
dqx

∫ 2π/qb

0
dqy

[〈
∂�

γ

�q
∂qy

∣∣∣∣∣
∂�

γ

�q
∂γ

〉
−

〈
∂�

γ

�q
∂γ

∣∣∣∣∣
∂�

γ

�q
∂qy

〉]
(82)

where a is the period in x . This expression resembles very closely the expression from which
TKNN started. To calculate it, we follow a reasoning inspired by [16]: when we add a phase
to the potential, the basis of functions chosen above remains a good basis for diagonalizing
the problem since the phase has not modified the translation properties of the system. Thus
we may write

�
m,γ

�q (x, y) =
∑

n j

Cm
nj(�q, γ )φ

�q
n j(x, y). (83)

All the dependence in γ is therefore in the coefficients of the development and we may write

σV = e

h̄(2π)2

∫ 2π/a

0
dqx

∫ 2π/qb

0
dqy

∑
n j

[〈
∂�

m,γ

�q
∂qy

∣∣∣∣∣∂Cm
nj

∂γ

〉
φ

�q
n j −

〈
∂Cm

nj

∂γ

∣∣∣∣∣
∂�

γ

�q
∂qy

〉
φ

∗�q
n j

]
. (84)

The important remark here is that the matrix element with a phase γ added to the potential in
y has the same expression as the matrix element in (qx + bγ

2π�2 , qy). We can therefore replace
∂
∂γ

by b
2π�2

∂
∂qx

. It can be shown that

σV = e

qh̄(2π)2a

∫ 2πp/a

0
dqx

∫ 2π/qb

0
dqy

∑
n j

[(
∂C∗m

nj

∂qy
.
∂Cm

nj

∂qx

)
−

(
∂C∗m

nj

∂qx
.
∂Cm

nj

∂qy

)]
. (85)
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And from Stokes’s theorem,

σV = e

qh̄(2π)2a

∑
n j

∫
ZdB

d�q.

〈
Cm

nj

∣∣∣∣∣∂Cm
nj

∂ �q

〉
. (86)

Following a reasoning similar to that in the Hall conductance case we again call ABCD the
Brillouin zone rectangle and if

Cm
nj (C D) = Cm

nj (AB)eiϑ(�q)

one can show that the expression is indeed the change of phase of the Cm
nj coefficients when

we translate them along and around the extended Brillouin zone. Therefore,

σV = e

ha

pnh − 1

q
= e

ha
m,

where we have just shown that m is the integer characterizing the adiabatic charge transport
coefficient. This Diophantine equation can also be written [15] as

B−1σh + a−1σV = ρ (87)

where ρ is the electronic density and we have changed m into σV.
In the present situation, a change of phase γ along y in the periodic potential is equivalent

to a translation of bγ /2π along y. Therefore, we define

Hγ = S−1
bγ /2π H Sbγ /2π . (88)

In particular, a change of phase of one period corresponds to a transformation of the
Hamiltonian by Sb. But we just showed that this translation corresponds to a certain
displacement in the Brillouin zone. This is how charge transport can also be understood as a
Berry phase, the Diophantine equation then being nothing but a coherence equation between
two displacements in the Brillouin zone. Results on the adiabatic charge transport in zero
magnetic field appear in [13].

3.2. The Hall conductance in 3D

The expression for the Hall conductance in 3D when the Fermi energy is in a gap is, after
Kubo’s formula [11]

σ m
i j = e2

(2π)2h

∫
dq3

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qi

∂u �q,m′

∂q j
− ∂u∗

�q,m′

∂q j

∂u �q,m′

∂qi

)
(89)

where i and j are x, y or z, since we want to compute the transport properties in the plane
where the electrons move in reality, m here is the band index and, as usual,

u �q,m(x, y, z) = e−i�q ·�r��q,m(x, y, z). (90)

3.2.1. Computation of σ m
xy

σ m
xy = e2

(2π)2h

∫
dq3

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qx

∂u �q,m′

∂qy
− ∂u∗

�q,m′

∂qy

∂u �q,m′

∂qx

)
(90)

with m the band index.
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We rewrite this equation as a function of the components of the rotated Brillouin zone as
above, recalling that

qx = qX cos θ − qZ sin α

qy = qY

qz = −qX sin θ + qZ cos α

and

qX = 1

cos(θ + α)
{qx cos α + qz sin α}

qY = qy

qZ = 1

cos(θ + α)
{qx sin θ + qz cos θ} .

(91)

Let

∂

∂qx
= 1

cos(θ + α)

{
cos α

∂

∂qX
+ sin θ

∂

∂qZ

}
∂

∂qy
= ∂

∂qY

∂

∂qz
= 1

cos(θ + α)

{
sin α

∂

∂qX
+ cos θ

∂

∂qZ

}
.

(92)

Then

σ m
xy = e2

(2π)2h

∫
dqX dqY dqZ

∑
m′�m

∫
dr3 cos α

(
∂u∗

�q,m′

∂qX

∂u �q,m′

∂qY
− ∂u∗

�q,m′

∂qY

∂u �q,m′

∂qX

)

+ sin θ

(
∂u∗

�q,m′

∂qZ

∂u �q,m′

∂qY
− ∂u∗

�q,m′

∂qY

∂u �q,m′

∂qZ

)
.

For the complete calculation, we begin with∫
dqX dqY dqZ

∫
dr3

(
∂u∗

�q,m′

∂qX

∂u �q,m′

∂qY
− ∂u∗

�q,m′

∂qY

∂u �q,m′

∂qX

)

which equals the phase change of the wavefunction when we transport it on a closed circuit
around a section of the Brillouin zone parallel to the (qX , qY ) plane, that is 2π× integer.

The article by Avron, Seiler and Simon [34] proves that this integer does not depend on
the section of the Brillouin zone chosen; that is, here it does not depend on qZ . Therefore we
may write∫

dqX dqY dqZ

∑
m�m′

∫
dr3

(
∂u∗

�q,m′

∂qX

∂u �q,m′

∂qY
− ∂u∗

�q,m′

∂qY

∂u �q,m′

∂qX

)

= 2πm1

∫
dqZ = 2πm1G3 = (2π)2m1

a1

ac
. (93)

Similarly,∫
dqX dqY dqZ

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qZ

∂u �q,m′

∂qY
− ∂u∗

�q,m′

∂qY

∂u �q,m′

∂qZ

)

= 2πm2

∫
dqX = 2πm2

2πn2

a cos θ
= (2π)2m2

n2

a cos θ
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where m1 and m2 are integers which result from the calculation followed by the addition of all
results for bands under the Fermi level. Finally,

σxy = e2

h

{m1a1

ac
cos α +

m2n2

a cos θ
sin θ

}
= e2

h

{
m1a1

ac

ñ1a

a1
+

m2n1

c

}

σxy = e2

h

m1ñ1 + m2n1

c
. (94a)

This 3D conductance appears to be the sum of two terms. When θ = 0, the integer n1 is
also equal to 0 and the second term disappears. We see here explicitly how the conductance
changes upon tilting the magnetic field, keeping its intensity constant.

3.2.2. Computation of σ m
yz

σ m
yz = e2

(2π)2h

∫
dqx dqy dqz

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qy

∂u �q,m′

∂qz
− ∂u∗

�q,m′

∂qz

∂u �q,m′

∂qy

)

and, after performing the coordinate change, one has, using notation similar to that for the
previous calculation,

σ m
yz = e2

h

{
sin α

−m1a1

ac
+ cos θ

−m2n2

a cos θ

}

= e2

h

{
ñ2c

a1

(−m1a1)

ac
+ cos θ

(−m2n2)

a cos θ

}

σ m
yz = −e2

h

m1ñ2 + m2n2

a
. (94b)

3.2.3. Computation of σ m
xz

σ m
xz = e2

(2π)2h

∫
dqx dqy dqz

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qx

∂u �q,m′

∂qz
− ∂u∗

�q,m′

∂qz

∂u �q,m′

∂qx

)
.

Then, it is easy to show that

σ m
xz = e2

(2π)2h

∫
dqX dqY dqZ

∑
m′�m

∫
dr3

(
∂u∗

�q,m′

∂qX

∂u �q,m′

∂qZ
− ∂u∗

�q,m′

∂qZ

∂u �q,m′

∂qX

)

σ m
xz = e2

h

m3

tb
(94c)

where m3 is equal, in appropriate units, to the phase which appears when the wavefunction is
transported around a circuit around the Brillouin zone in qX and qZ/2π . We show later that
this quantity is identically zero.

σ m
xy = e2

h

m1ñ1 + m2n1

c
σ m

yz = −e2

h

m1ñ2 + m2n2

a
σ m

xz = e2

h

m3

tb
. (94)

The three independent components of the conductivity tensor when the Fermi level is in a
gap now appear, in appropriate units, as the sums of two terms, depending on a sum of integers.
Among these integers, m1, m2 and m3 are the ‘Berry phases’ appearing upon displacements
around the Brillouin zone, called ‘TKNN integers’ by Avron, Seiler and Simon [34]. They are
topological quantities related to the geometry of the fibre bundle with as the basis the Brillouin
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zone seen as a 3D torus. In 3D, there exist only three independent such integers since one can
build only three 2D sections of the 3D torus.

To pursue the analogy with the case where the magnetic field is perpendicular to the plane
of the electron motion, we now calculate the Diophantine equation relating the conductances.
To this end, we first study adiabatic charge transport along y.

3.3. Adiabatic charge transport along y

In the quantity

σVy = −eh̄
∫

dqx dqy dqz

[〈
∂uγ

�q
∂qy

∣∣∣∣∣
∂uγ

�q
∂γ

〉
−

〈
∂uγ

�q
∂γ

∣∣∣∣∣
∂uγ

�q
∂qy

〉]
(95)

the phase γy appears in the potential defined by

2 cos

(
2π

b
y + γy

)
= ei 2π

b yeiγy + e−i 2π
b ye−iγy .

This phase does not modify the translation properties of the Hamiltonian, our ‘usual’ basis
can still be used and we may write

um
�q (�r) = e−i�q·�r ∑

n

∑
k

L∑
j=1

cm
njk(�q, γy)φ

�q
n jk(�r) (96)

where the dependence on γy lies in the coefficients cm
njk . This phase is ‘equivalent’ to the

translation

qX → qX + γy
n2 L

ta cos θ
.

Therefore,
∂

∂γy
= n2 L

ta cos θ

∂

∂qX

σVy = eh̄
n2 L

Lta cos θ

∫ πn2 L/a cos θ

−πn2 L/a cos θ

dqx

∫
dqY

∫
dqZ

∑
n j

cos(θ + α)

×
[

∂cm∗
n j (�q)

∂qX

∂cm
nj(�q)

∂qY
− ∂cm∗

n j (�q)

∂qY

∂cm
nj(�q)

∂qX

]
.

We know that the change of phase of the total wavefunction when it is displaced around this
‘enlarged’ Brillouin zone is equal to Lm1, and the change of phase of the cm

njk will therefore
be Lm1 − 1. The expression for the adiabatic transport coefficient therefore becomes

σVy = e

h

n2 L

Lta cos θ
G3 cos(θ + α)[Lm1 − 1].

Hence,

σVy = e

h

n2 L

Lta cos θ

a1

ac

a cos θ

a1n2
[Lm1 − 1] = e

h

2π

ac

[Lm1 − 1]

N
so

nvy = [Lm1 − 1]

t
or σVy = e

hac
nvy (97)

and since

m1 = n2σ̃xy + n1σ̃yz

with σ̃ in convenient units, one gets the final formula

1 = t σ̃Vy + Ln2σ̃xy + Ln1σ̃yz . (98)
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3.4. Diophantine equation and boundary conditions on the Brillouin zone

We have shown that in the present case adiabatic transport along the y direction is connected
with two Hall conductances, we have not yet proved that it is an integer.

To do so, we follow a reasoning close to what has been presented above, where the
magnetic field is perpendicular to the plane of the electrons [18]. We may write in 3D, using
the translation properties of the basis functions in the Brillouin zone,

�qx + 2π
a ,qy ,qz = eiζ(qx ,qy ,qz)� �q �qx ,qy + 2π

tb ,qz = � �q �qx ,qy ,qz+ 2π
c = eiη(qx ,qy,qz )� �q (99)

with its edges identified as usual, since two nodes of the Brillouin zone correspond to equivalent
states, having the same energies and the same eigenvalues under the translation operators.
Therefore,

ζ

(
qx, qy +

2π

tb
, qz

)
= ζ(qx, qy, qz)

η

(
qx, qy +

2π

tb
, qz

)
= η(qx, qy, qz)

ζ

(
qx, qy, qz +

2π

c

)
+ η(�q) = ζ(�q) + η

(
qx +

2π

a
, qy, qz

)
.

(100)

We may choose the phases as follows:

ζ(�q) = σ1tbqy + ζ1(qx, qz) η(�q) = σ2tbqy + η1(qx, qz) (101)

with

ζ1

(
qx , qz +

2π

c

)
+ η1(qx, qz) = ζ1(qx, qz) + η1

(
qx +

2π

a
, qz

)

remembering that

Sb�
�q = eim′qy(tb)�qx + 2π

ta Ln1,qy,qz + 2π
tc Ln2 .

Sb�
�q and � �q have the same energy, but not the same eigenvalue under the magnetic translation

operators because of the commutation properties of the operators Sa, Stb, Sc. In this expression,
m ′ is an integer and we again follow the reasoning by Weinreich [35]. For these two equations
to be compatible, one must have for each Landau level (or band)

1 = Ln2σ1 + Ln1σ2 + tm ′ L integer (102)

and

ζ1(qx, qz) = η1(qx, qz) = 0.

We showed that adiabatic charge transport is quantized, and note that the conditions on
the edges of the Brillouin zone impose m3 = 0.

Our results coincide with those previously obtained by Montambaux and Kohmoto [27]
who started from Halperin’s [26] results for the 3D conductance using a particular geometry and
in the tight binding approximation, and also with those of Kohmoto et al [28], who calculated
a Diophantine equation for the quantum Hall effect in 3D using Streda’s method.

Our approach has the advantage of calculating the matrix element without approximation
and deducing from it the transport properties and the Diophantine equation. It also allows the
rigorous numerical calculation of the energy spectra and of the conductances associated with
the gaps.
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3.5. Other transport coefficients

Tesanovic et al (TAH) [16] have shown that adiabatic charge transport can be calculated using
an expression which takes into account the derivative in γx and the derivative in γy , where
γx and γy are phases added to the potential, in a way similar to what we presented for the y
direction. This method allows, on also adding a phase in z, the definition of the two other
relevant quantities, one with phases in y and z, another with phases in x and z. Adding a phase
in x is equivalent to the following change:

qy → qy + γx
L

tbñ1

and adding a phase in z is equivalent to

qy → qy + γz
1

tbñ1
.

Then,

∂

∂γx
= L

tbn1

∂

∂qy
and

∂

∂γz
= 1

tbn1

∂

∂qy
.

This means that, among the three quantities that we can calculate using the TAH method,
one depending on γx and γz will be identically zero, since it has only derivatives with respect to
qy; the remaining two will be proportional to each other, since the derivatives are. Therefore,

σVxy = LσVzy . (103)

4. Concluding remarks

The appropriate basis functions, the matrix element and the topologically invariant transport
coefficients for the 3D electron gas in a strong tilted magnetic field and a general 3D periodic
potential have been calculated without any approximation. This original result is a very
powerful tool for investigating the transport properties of the three-dimensional electron gas.

Since high resolution measurements of the longitudinal and Hall resistances for a 2D
electron gas in a weak superlattice potential [35] have provided evidence for the existence of a
fractal structure of the Hofstadter type in the energy spectrum, this is now a topic of particular
interest.

Recently, various authors [36–39] have studied and tried to label the gaps of such energy
diagrams for the 3D electron gas by means of calculations based on tight binding models.

Our work allows not only the description but also the rigorous prediction of such gaps.
Numerical studies will be published elsewhere.
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Appendix A. Calculation of the 3D Hamiltonian matrix element

We present the calculation of the matrix element of the Hamiltonian

H = p2
x + (p2

y + eBx cos θ − eBz sin θ)2 + p2
z

2m
+ V (x, y, z) = H0 + V (x, y, z) (65)

with

V (x, y, z) = Vx cos

(
2π

a
x

)
+ Vy cos

(
2π

b
y

)
+ Vz cos

(
2π

c
z

)
(66)

with the complete basis defined above. For simplicity, let M01 and M01 be the two terms of the
matrix element of H0, M1 and M2, M3 and M4, M5 and M6 the matrix elements of respectively
the x, y and z terms of the periodic potential.

A.1. Periodic potential: term in x

M1 is the term with exp
(
i 2π

a x
)
:

M1 = Ln2

(2π)3a cos θ

∫
dx dy dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑
µ′

exp

(
iµ′ a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

exp

(
−iy

(
q ′

Y +
2π

tb
µ′

))

× fn′

(
x cos θ − z sin θ + (q ′

Y + 2πµ′/tb)�2

�

)
exp

(
i
2π

a
x

)

× exp(i(qZ + kG3)(−x sin α + z cos α))
∑

µ

exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× exp

(
iy

(
qY +

2π

tb
µ

))
fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
. (A.1)

Calculating the integral over y,

M1 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ

∫
dx dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× fn′

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

a
x

)
× exp(i(qZ + kG3)(−x sin α + z cos α))

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
. (A.2)
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With the changes

X = x cos θ − z sin θ

Z = −x sin α + z cos α

x = 1

cos(θ + α)
(X cos α + Z sin θ)

z = 1

cos(θ + α)
(X sin α + Z cos θ)

dx dz = 1

cos(θ + α)
dX dZ

(A.3)

we get

M1 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i(q ′

Z + k ′G3)Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

fn′

(
X + (qY + 2πµ/tb)�2

�

)

× exp

(
i
2π

a

X cos α + Z sin θ

cos(θ + α)

)
exp(i(qZ + kG3)Z)

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)
(A.4)

and since

cos(θ + α) = cos θ
ñ1a

a1
− ñ2c

a1
sin θ = a cos θ

a1

(
ñ1 − ñ2

c sin θ

a cos θ

)
= a cos θ

a1

(
ñ1 − ñ2

n1

n2

)

= a cos θ

n2a1
(A.5)

and
cos α

cos(θ + α)
= ñ1a

a1

n2a1

a cos θ
= n2ñ1

cos θ

cos θ

cos(θ + α)
= n2a1

a
sin α

cos(θ + α)
= ñ2c

a1

n2a1

a cos θ
= c

a

n2ñ2

cos θ
= n1ñ2

sin θ

sin θ

cos(θ + α)
= n2a1 sin θ

a cos θ
= n1a1

c

(A.6)

the integral over Z equals∫
dZ exp(−i(q ′

Z + k ′G3)Z) exp

(
i
2π

a

Z sin θ

cos(θ + α)

)
exp(i(qZ + kG3)Z)

=
∫

dZ exp(−i[(q ′
Z − qZ ) + (k ′ − k)G3]Z) exp

(
i2πn1

a1

ac
Z

)

=
∫

dZ exp(−i[(q ′
Z − qZ ) + (k ′ − k)G3]Z) exp(in1G3 Z)

= 2πδ[(q ′
Z − qZ ) + (k ′ − k − n1)G3] = 2πδ(q ′

Z − qZ )δ(k ′ − k − n1).

The expression now reads

M1 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )δ(k ′ − k − n1)

(2π)a cos θ cos(θ + α)

∫
dX

∑
µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

a

X cos α

cos(θ + α)

)

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)
. (A.7)
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With the change of variable

X̃ = X + (qY + 2πµ/tb)�2 (A.8)

we get

M1 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )δ(k ′ − k − n1)

(2π)a cos θ cos(θ + α)

×
∫

d X̃
∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j − j ′)

])

× fn′

(
X̃

�

)
exp

(
i
2π

a

cos α

cos(θ + α)
(X̃ − (qY + 2πµ/tb)�2)

)
fn

(
X̃

�

)
.

Rewriting the second exponential:

exp

(
i
2π

a

cos α

cos(θ + α)
(X̃ − (qY + 2πµ/tb)�2)

)

= exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
exp

(
−i

2π

a

n2ñ1

cos θ
�2qY

)
exp

(
i
2π

a

n2ñ1

cos θ

2π�2

tb
µ

)

and using the rationality properties of the magnetic field (32), this expression becomes

exp

(
i
2π

a

cos α

cos(θ + α)
(X̃ − (qY + 2πµ/tb)�2)

)

= exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
exp

(
−iñ1

tb

L
qY

)
exp

(
−i2π

ñ1

L
µ

)
.

Therefore,

M1 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )δ(k ′ − k − n1)

(2π)a cos θ cos(θ + α)
exp

(
−iñ1

tb

L
qY

)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j − j ′ − ñ1)

])

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)

and since∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j − ñ1)

])

= 2π Ln2

a cos θ

∑
ν

δ

(
(qX − q ′

X ) +
2πn2

a cos θ
( j − j ′ − ñ1 + Lν)

)

this equals

δ(qX − q ′
X )δ( j − j ′ − ñ1) (mod L).

We finally get

= δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)
δ(k ′ − k − n1)δ( j ′ − j − ñ1) exp

(
−iñ1

tb

L
qY

)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)
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and

M1 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δ(k

′ − k − n1)δ( j ′ − j − ñ1) exp

(
−iñ1

tb

L
qY

)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)
.

It is easy to see that the second term is

M2 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δ(k

′ − k + n1)δ( j ′ − j + ñ1) exp

(
iñ1

tb

L
qY

)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
−i

2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)
and the sum is

M1 + M2 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)

{
δ(k ′ − k + n1)δ( j ′ − j + ñ1) exp

(
iñ1

tb

L
qY

)

×
∫

d X̃ φn′

(
X̃

�

)
exp

(
−i

2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)

+ δ(k ′ − k − n1)δ( j ′ − j − ñ1) exp

(
−iñ1

tb

L
qY

)

×
∫

d X̃ φn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ1

cos θ
X̃

)
fn

(
X̃

�

)}
Vx

2
. (A.9)

A.2. Periodic potential: term in y

For the y term of the potential we calculate

M3 = Ln2

(2π)3a cos θ

∫
dx dy dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑
µ′

exp

(
iµ′ a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

exp

(
−iy

(
q ′

Y +
2π

tb
µ′

))

× fn′

(
x cos θ − z sin θ + (q ′

Y + 2πµ′/tb)�2

�

)
exp

(
i
2π

b
y

)

× exp(i(qZ + kG3)(−x sin α + z cos α))
∑

µ

exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× exp

(
iy

(
qY +

2π

tb
µ

))
fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

The integral over y is directly calculated as∫
dy exp

(
−iy

[
(q ′

Y − qY ) +
2π

tb
(µ′ − µ − t)

])
= 2πδ(q ′

Y − qY )δ(µ′ − µ − t)

and therefore the matrix element is

M3 = Ln2

(2π)2a cos θ

∫
dx dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑

µ

exp

(
i(µ + t)

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))
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× fn′

(
x cos θ − z sin θ + (qY + 2π(µ + t)/tb)�2

�

)

× exp(i(qZ + kG3)(−x sin α + z cos α)) exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

The very same change of coordinates (A.3) as in the previous paragraph, yields

M3 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)
exp

(
it

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

×
∫

dX dZ exp(−i(q ′
Z + k ′G3)Z)

∑
µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× fn′

(
X + (qY + 2πµ/tb)�2 + 2π�2/b

�

)
exp(i(qZ + kG3)Z)

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)

with the second change (A.8)

X̃ = X +

(
qY +

2πµ

tb

)
�2

M3 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)
exp

(
it

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

×
∫

d X̃ dZ exp(−i[(q ′
Z − qZ ) + (k ′ − k)G3]Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)

which equals

M3 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)2a cos θ cos(θ + α)
δk′k exp

(
it

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

×
∫

d X̃ fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])
,

that is,

M3 = δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)
δ j ′ jδk′k exp

(
it

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

×
∫

d X̃ fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)
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M3 = δ(�q ′ − �q)δ j ′ jδk′k exp

(
it

a cos θ

Ln2

( {qx cos α + qz sin α}
cos(θ + α)

+
2πn2

a cos θ
j

))

×
∫

d X̃ fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)
.

The other term is obviously

M4 = δ(�q ′ − �q)δ j ′ jδk′k exp

(
−it

a cos θ

Ln2

( {qx cos α + qz sin α}
cos(θ + α)

+
2πn2

a cos θ
j

))

×
∫

d X̃ fn′

(
X̃ − 2π�2/b

�

)
fn

(
X̃

�

)
yielding (A.10)

M3 + M4 = Vy

2
δ(�q ′ − �q)δ j ′ jδk′k

{
exp

(
it

a cos θ

Ln2

( {qx cos α + qz sin α}
cos(θ + α)

+
2πn2

a cos θ
j

))

×
∫

d X̃ fn′

(
X̃ + 2π�2/b

�

)
fn

(
X̃

�

)

+ exp

(
−it

a cos θ

Ln2

( {qx cos α + qz sin α}
cos(θ + α)

+
2πn2

a cos θ
j

))

×
∫

d X̃ fn′

(
X̃ − 2π�2/b

�

)
fn

(
X̃

�

)}
.

A.3. Periodic potential: term in z

We start with the term in exp
(
i 2π

c z
)
:

M5 = Ln2

(2π)3a cos θ

∫
dx dy dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑
µ′

exp

(
iµ′ a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

exp

(
−iy

(
q ′

Y +
2π

tb
µ′

))

× fn′

(
x cos θ − z sin θ + (q ′

Y + 2πµ′/tb)�2

�

)

× exp

(
i
2π

c
z

)
exp(i(qZ + kG3)(−x sin α + z cos α))

×
∑

µ

exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
exp

(
iy

(
qY +

2π

tb
µ

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

With the very same steps as for the previous terms, starting with the integral over y,

M5 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ

∫
dx dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× f ′
n

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

c
z

)
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× exp(i(qZ + kG3)(−x sin α + z cos α)) exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

We effect the first change of variables (A.3) (x, z) → (X, Z):

M5 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i[(q ′

Z − qZ ) + (k ′ − k)G3]Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

c

(X sin α + Z cos θ)

cos(θ + α)

)

× fn

(
X + (qY + 2πµ/tb)�2

�

)
.

Recalling (A.5) and (A.6), we get

exp

(
i
2π

c

(X sin α + Z cos θ)

cos(θ + α)

)
= exp

(
i
2π

c

cn2ñ2

a cos θ
X

)
exp

(
i
2π

c

n2a1

a
Z

)

= exp

(
i
2π

a

n2ñ2

cos θ
X

)
exp(iG3n2 Z),

that is,

M5 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i[(q ′

Z − qZ ) + (k ′ − k − n2)G3]Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X

)
fn

(
X + (qY + 2πµ/tb)�2

�

)
.

We can therefore also calculate the integral over Z :

= Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)
δ(k ′ − k − n2)

×
∫

dX
∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X

)
fn

(
X + (qY + 2πµ/tb)�2

�

)
.

With the change (A.8):

X̃ = X + (qY + 2πµ/tb)�2

the integral becomes

M5 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)
δ(k ′ − k − n2)

×
∫

d X̃
∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ2

cos θ
(X̃ − (qY + 2πµ/tb)�2)

)
fn

(
X̃

�

)
,
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the second exponential is rewritten as

exp

(
i
2π

a

n2ñ2

cos θ
(X̃ − (qY + 2πµ/tb)�2)

)

= exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
exp

(
−i

2π�2

a

n2ñ2

cos θ
qY

)
exp

(
−i

2π

a

n2ñ2

cos θ

2πµ�2

tb

)

= exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
exp(−iñ2tbqY ) exp

(
−i

2π ñ2µ

L

)
and

M5 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)
δ(k ′ − k − n2)

∫
d X̃ exp(−iñ2tbqY )

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j − ñ2)

])

× fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)
.

As in the previous case,∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j − ñ2)

])

= 2π Ln2

a cos θ

∑
ν

δ

(
(qX − q ′

X ) +
2πn2

a cos θ
( j − j ′ − ñ2 + Lν)

)

= δ(qX − q ′
X )δ( j − j ′ − ñ2) (mod L)

which yields

M5 = δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)
δ( j ′ − j − ñ2)δ(k

′ − k − n2) exp(−iñ2tbqY )

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)
,

that is,

= δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δ( j ′ − j − ñ2)δ(k

′ − k − n2) exp(−iñ2tbqy)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)
.

With the term in exp
(−i 2π

c z
)

M6 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δ( j ′ − j + ñ2)δ(k

′ − k + n2) exp(iñ2tbqy)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
−i

2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)
the sum is

M5 + M6 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)

Vz

2

{
δ( j ′ − j − ñ2)δ(k

′ − k − n2)exp(−iñ2tbqy)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
i
2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)
+ δ( j ′ − j + ñ2)δ(k

′ − k + n2) exp(iñ2tbqy)

×
∫

d X̃ fn′

(
X̃

�

)
exp

(
−i

2π

a

n2ñ2

cos θ
X̃

)
fn

(
X̃

�

)}
. (A.11)
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We now have the analytic expressions for the terms in x, y and z of the periodic potential.

A.4. The H0 matrix element

We calculate

M0 = Ln2

(2π)3a cos θ

∫
dx dy dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑
µ′

exp

(
iµ′ a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

exp

(
−iy

(
q ′

Y +
2π

tb
µ′

))

× fn′

(
x cos θ − z sin θ + (q ′

Y + 2πµ′/tb)�2

�

)
× H0 exp(i(qZ + kG3)(−x sin α + z cos α))

×
∑

µ

exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
exp

(
iy

(
qY +

2π

tb
µ

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

Note the following property:

H0 exp

(
iy

(
qY +

2π

tb
µ

))
= p2

x + [(qY + 2π
tb µ)2 + eBx cos θ − eBz sin θ ]2 + p2

z

2m

× exp

(
iy

(
qY +

2π

tb
µ

))
which allows the calculation of the integral over y:

M0 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ

∫
dx dz exp(−i(q ′

Z + k ′G3)(−x sin α + z cos α))

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× fn′

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)

× p2
x + [(qY + 2π

tb µ)2 + eBx cos θ − eBz sin θ ]2 + p2
z

2m
× exp(i(qZ + kG3)(−x sin α + z cos α))

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× fn

(
x cos θ − z sin θ + (qY + 2πµ/tb)�2

�

)
.

As has been done previously, we go from (x, z) to (X, Z ) and therefore also change the
impulsion components:

X = x cos θ − z sin θ px = PX cos θ − PZ sin α

Z = −x sin α + z cos α pz = −PX sin θ + PZ cos α

and

x = 1

cos(θ + α)
(X cos α + Z sin θ) PX = 1

cos(θ + α)
(px cos α + pz sin α)
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z = 1

cos(θ + α)
(X sin α + Z cos θ) PZ = 1

cos(θ + α)
(px sin θ + pz cos θ),

that is,

p2
x + p2

z = (PX cos θ − PZ sin α)2 + (−PX sin θ + PZ cos α)2

= P2
X + P2

Z − 2 cos θ sin αP2
X P2

Z − 2 sin θ cos αP2
X P2

Z

= P2
X + P2

Z − 2 sin(θ + α)PX PZ

which, in the new coordinates, reads

M0 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i(q ′

Z + k ′G3)Z)

∑
µ′

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

fn′

(
X + (qY + 2πµ/tb)�2

�

)

× P2
X + [(qY + 2π

tb µ)2 + eB X]2 + P2
Z − 2 sin(θ + α)PX PZ

2m

× exp(i(qZ + kG3)Z) exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))

× fn

(
X + (qY + 2πµ/tb)�2

�

)
= M01 + M02.

We start by calculating the term M01 with

P2
X + [(qY + 2π

tb µ)2 + eB X]2 + P2
Z

2m

using

P2
Z exp(i(qZ + kG3)Z) = h̄2(qZ + kG3)

2 exp(i(qZ + kG3)Z)

which becomes

M01 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i[(q ′

Z − qZ ) + (k ′ − k)G3]Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

fn′

(
X + (qY + 2πµ/tb)�2

�

)

× P2
X + [(qY + 2π

tb µ)2 + eB X]2 + h̄2(q ′
Z + k ′G3)

2

2m

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)
.

Since the fn are harmonic oscillator eigenfunctions,

P2
X + [(qY + 2π

tb µ)2 + eB X]2 + h̄2(q ′
Z + k ′G3)

2

2m
fn

(
X + (qY + 2πµ/tb)�2

�

)

=
[(

n +
1

2

)
h̄ωC +

h̄2(q ′
Z + k ′G3)

2

2m

]
fn

(
X + (qY + 2πµ/tb)�2

�

)
.
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Therefore,

M01 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

[(
n +

1

2

)
h̄ωC +

h̄2(q ′
Z + k ′G3)

2

2m

]

×
∫

dX dZ exp(−i[(q ′
Z − qZ ) + (k ′ − k)G3]Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
fn

(
X + (qY + 2πµ/tb)�2

�

)

and after calculating the integral over Z

M01 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)
δk′k

[(
n +

1

2

)
h̄ωC +

h̄2(qZ + kG3)
2

2m

]

×
∫

dX
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
fn

(
X + (qY + 2πµ/tb)�2

�

)

the integral over X can be obtained using the orthonormality properties of the oscillator
eigenfunction:

M01 = Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)
δk′kδn′n

[(
n +

1

2

)
h̄ωC +

h̄2(qZ + kG3)
2

2m

]

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])
,

that is,

M01 = δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)
δk′kδn′nδ j ′ j

[(
n +

1

2

)
h̄ωC +

h̄2(qZ + kG3)
2

2m

]

M01 = δ(q ′
x − qx)δ(q

′
y − qy)δ(q

′
z − qz)δk′kδn′nδ j ′ j

[
(n + 1

2 )h̄ωC

+
h̄2

2m

(
qx cos α + qz sin α

cos(θ + α)
+ kG3

)2]
. (A.12)

The second term is

M02 = Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

∫
dX dZ exp(−i(q ′

Z + k ′G3)Z)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

× fn′

(
X + (qY + 2πµ/tb)�2

�

) − sin(θ + α)

m
PX PZ exp(i(qZ + kG3)Z)

× exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)
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M02 = − Ln2δ(q ′
Y − qY )

(2π)2a cos θ cos(θ + α)

sin(θ + α)

m
h̄(qZ + kG3)

×
∫

dX dZ exp(−i[(q ′
Z − qZ ) + (k ′ − k)G3]Z)

×
∑
µ′

exp

(
iµ

a cos θ

Ln2

(
q ′

X +
2πn2

a cos θ
j ′
))

fn′

(
X + (qY + 2πµ/tb)�2

�

)

× PX exp

(
−iµ

a cos θ

Ln2

(
qX +

2πn2

a cos θ
j

))
fn

(
X + (qY + 2πµ/tb)�2

�

)
,

the integral over Z is

M02 = − Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)

sin(θ + α)

m
δk′kh̄(qZ + kG3)

×
∫

dX
∑
µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

× fn′

(
X + (qY + 2πµ/tb)�2

�

)
PX fn

(
X + (qY + 2πµ/tb)�2

�

)
,

that is, with X̃ = X + (qY + 2πµ/tb)�2,

M02 = − Ln2δ(q ′
Y − qY )δ(q ′

Z − qZ )

(2π)a cos θ cos(θ + α)

sin(θ + α)

m
δk′kh̄(qZ + kG3)

×
∑

µ

exp

(
iµ

a cos θ

Ln2

[
(q ′

X − qX ) +
2πn2

a cos θ
( j ′ − j)

])

×
∫

d X̃ fn′

(
X̃

�

)
PX fn

(
X̃

�

)

M02 = −δ(q ′
X − qX )δ(q ′

Y − qY )δ(q ′
Z − qZ )

cos(θ + α)

sin(θ + α)

m
h̄(qZ + kG3)δk′kδ j ′ j

∫
d X̃ fn′

(
X̃

�

)

× PX fn

(
X̃

�

)
(A.13)

with∫
d X̃ fn′

(
X̃

�

)
PX fn

(
X̃

�

)
= − ih̄

�
√

2
δn′,n−1

√
n +

ih̄

�
√

2
δn′,n+1

√
n + 1 (A.14)

where the properties of the harmonic oscillator functions have been applied.
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